Robust Speech and Bird Song Processing using Multi-band Correlograms and Sparse Representations

نویسنده

  • Lee Ngee Tan
چکیده

of the Dissertation Robust Speech and Bird Song Processing using Multi-band Correlograms and Sparse Representations by Lee Ngee Tan Doctor of Philosophy in Electrical Engineering University of California, Los Angeles, 2014 Professor Abeer Alwan, Chair This dissertation focuses on algorithms for robust speech and bird song processing. Many applications perform well under ideal signal conditions, e.g. noisefree, full bandwidth, sufficient training data. However, a large degradation in performance is generally observed when the input signal condition deviates from these ideal conditions. This dissertation describes robust algorithms for three applications, namely human-pitch detection, automatic speech recognition, and birdsong phrase classification. In the first application, a noise-robust, multi-band summary correlogram (MBSC)-based pitch detector is proposed. Novel signal processing schemes, which include comb-filter channel selection and subband reliability weighting, are designed to enhance the MBSC’s peak at the most likely pitch period. In the second application, a feature enhancement scheme using jointly-sparse reference and estimated soft-mask representations, is developed for noise-robust automatic speech recognition (ASR). Reference and estimated soft-mask exemplarpairs are extracted from clean and noisy utterance-pairs in the training data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auditory Contrast Spectrum for Robust Speech Recognition

Traditional speech representations are based on power spectrum which is obtained by energy integration from many frequency bands. Such representations are sensitive to noise since noise energy distributed in a wide frequency band may deteriorate speech representations. Inspired by the contrast sensitive mechanism in auditory neural processing, in this paper, we propose an auditory contrast spec...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

Face Recognition in Thermal Images based on Sparse Classifier

Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...

متن کامل

From Multi-Band Full Combination to Multi-Stream Full Combination Processing in Robust ASR

The multi-band processing paradigm for noise robust ASR was originally motivated by the observation that human recognition appears to be based on independent processing of separate frequency sub-bands, and also by “missing data” results which have shown that ASR can be made significantly more robust to band-limited noise if noisy sub-bands can be detected and then ignored. Of the different mult...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014